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Boundary K-matrices for the X Y Z ,  XXZ and XXX 
spin chains 

H J de Vega and A GonzBlez-Ruizt 
LPTHE. Tour 16. ler etage, Universit6 Paris VI, 4 Place lussieu, 75252 Paris cedex 05, 
FmCe 

Received 5 April 1994 

Abstract. The general solutions for the factorization equations of the reflection “ices K’(0) 
for the eight-vertex and six-vertex models (XYZ, X X Z  and X X X  chains) are found. The 
associated integnble magnetic Hamiltonians are derived explicitly, finding families depending 
on several continuous as well as discrete parameters. 

1. Introduction 

It is clearly interesting to find the widest possible class of boundary conditions (BC) 
compatible with integrability associated with a given model. 

Not all BC obey this requirement. Periodic and twisted (under a symmetry of the model) 
BC are usually compatible with the Yang-Baxter equations [1,2]. In addition, there are the 
BC defined by reflection matrices K* [3-6]. These K* matrices can be interpreted as 
defining the scattering by the boundaries. In a recent publication [7], the interpretation of 
these matrices as boundary S-matrices in two-dimensional integrable quantum field theories 
was developed. They also imply boundary terms for the spin Hamiltonians which can be 
interpreted as the coupling with magnetic fields on the edges of the chain. 

In addition, quantum group invariance arises for specific choices of fixed BC (see for 
example [5,8,9] for the trigonometric case and [lo] for the elliptic case). A quantum-group- 
like structure is still to be found for which Baxter’s eight-vertex elliptic matrix [ l ]  could act 
as an intertwiner (for a recent attempt see [ 1 I]) giving an affine quantum invariance to the 
infinite spin chain and the boundary terms for the quantum group invariance of the finite 
chain. This program has been achieved in the elliptic case for the free-fermionic model 
(see [IO, 121). 

A general setting for finding boundary terms compatible with integrability was proposed 
by Sklyanin [3]. To find these BC, one has to solve the so-called reflection equations: 

R(8 -8‘)[K-(B)@ l]R(B+B’)[K-(8’)@ I] = [K-(8’)@ l]R(B+B’)[K-(O)@ lIR(0 -0’) 

(1) 

R(B -0‘)[l @Kf(0)]R(8+8‘)[1 @Kt(8’)] = [l @Kt(O’)]R(O+O’)[l@ Kt(8)]R(0 -0’) 

(2) 

where R(0) is the R-matrix of the chain and K*@) give the boundary terms (see below). 
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As is known, the XYZ model is obtained from the elliptic eight-vertex solution of the 
Yang-Barter equation: 

[I €3 R(0 - e')][R(e) €3 1111 €3 R(e')l = [ N O ' )  @ 1 1 [ 1  €3 R(0)l[R(0 - e') €3 11. (3) 

The XXZ and XXX modeIs follow, respectively, from the higonometric and rational 
limits of this R-matrix. 

We present i n  this paper the general solutions K * ( e )  to these equations for the XYZ, 
XXZ and XXX models. We find, for the elliptic case, two families of solutions, each 
family depending on one continuous and one discrete parameter; see equations (35) and 
(36). For the higonometric and rational limit, we find a family of solutions depending on 
four continuous parameters; see equations (44) and (52). respectively. 

We remark that the trigonometric limit of the elliptic solutions of (I)  and (2) does not 
provide all the solutions to the higonometridhyperbolic case. 

From these K * @ )  solutions, we derive the boundary terms in the XYZ Hamiltonian 
which are compatible with integrability. Finally, we analyse the relation of the present 
eight-vertex results with the general K-matrices of the six-vertex results reported in (41 and 
consider, in addition, the rational limit. 

2. General solution to the reflection equations for the eight-vertex model (XYZ chain) 

The R-matrix for the XYZ chain can be written as [ I ]  

1 0 0 k sn y sn0 
sn 0 

O sn(e+y)  sn sn Y 0 sn(0+y)  sn Y 0 O j  I k s n y s n 0  0 0 1 

(4) 
sn(0 + y )  sn(8 + y )  

0 
R(B) = 

where sn (and cn, dn in the formulae below) stand for Jacobi elliptic functions of modulus 
O S k < 1 .  

This solution of the Yang-Baxter equations enjoys the following properties: 
(i) regularity: R(0) = 1; 
(ii) parity invariance: P R ( 0 ) P  = R(B) where P f j  = 8:s;; 
(iii) time-reversal invariance: Rzj = R$ and; 
(iv) crossing unitarity: R(0)&-0 - 2 ~ )  = b(0)1. 

Here, = R::, q = y and 

From (3) and (i), unitarity follows 
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It is shown in [3] that when the R-matrix enjoys properties (ii)-(iv) and (6), we can look 
for solutions to equations ( I )  and (2) in order to find open BC compatible with integrabiIity. 

Since (ii) holds, equations (1) and (2) are equivalent. We now look for the general 
solution of these equations in the form 

Inserting equations (4) and (8 )  into (I), we find twelve independent equations: 

b'yz' + c'd-zz' = c'd-yy' + b'zy' 

d-uu' + d'xu' = d'ux' + d-xx' 

b-yz' + c-d'zz' = c-d'yy' + b-zy' 

b'c-uu' + b-c'xu' = c'b-ux' + c-b+xx' 

c'yx' + b'd-zx' + d-uz' + d'xz' = c-yx' + b'c-uy' + b-c'xy' + b-d'zx' 

b'p' + d-d'uy' + xy' + c'd-zu' = b-yx' + b-b'uy' + c-c'xy' + c-d'zx' 

b-dtyx' + C-ZX' + b'c-uz' + b-c'xz' = b'd-yx' + d-uy' + d'xy' + c'zx' 

b-yd + C-C'UY' + b-b'xy' + c-d'zv' = b'yx' + uy' + d-d'xy' + c'd-zx' 

c-d'yx' + b-zx' + b-b'uz' + C-C'XZ' = c'd-yu' + b'zu' + z'x + d'd-uz' 

C-YU' + b-c'vy' + b'c-xy' + b-d'zd = c'yu' + b'd-zv' + d'w' + d-xz' 

c'd-yx' + b'zx' + UZ' + d-d'xz' = c-d'yu' + b-zu' + C-C'UZ' + b-b'xz' 

b'd-yu' + d'uy' + d-xy' + C'ZU' = b-d'yu' + c-zu' + c'b-uz' + b'c-xz' 

where 

0 0 d* 
0 b* c* 

R(e "') = ( c* b* g )  
0 0 1  

and x' = x(e ' ) ,  y' = y(6"), etc. 
W e  start by assuming that one of the elements of K in equation (8) is equal to zero. 

There will be four cases depending on which element is zero, but only two of these turn 
out to be different: 

(i) x = 0 = x'.  Using equation (10) we have U = 0 = U' and we are left just with (11) 
and (9) as independent equations. In order that these two equations be satisfied, we must 
have that 
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which implies (zly) ’  = 1. Two solutions are then obtained 
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0 1  
K(0)=(*1 0) 

where, from now on, an arbitrary multiplicative function of 0 will be omitted. 
The case where U = 0 = U’ is equivalent to this. 
(ii) z = 0 = 2’. From equation (9), y = 0 = y‘ and from equations (12) and (10) 

, , ctb-v/x t c - b t  
b+c- u/x + b-c+ 

u / x  = 

dtu/x + d- 
d-u/x + d+ 

which implies (u/x)’ = 1 and then 

- - 

1 0  
K ( 0 )  = (0 *1) 

The case where y = 0 = y’ is equivalent to this. 
We now assume x ( 0 )  # 0 and y(0) # 0. Then, equations (1 1) and (9) imply that 

z (0 )  = fy(0) # 0 (26) 

and (12) and (10) require 

V ( 0 )  = w e )  + 0. (27) 

The matrices K (0) in this case have the form 

where e:, e:, €32 = 1. Omitting an arbitrw multiplicative function of 0, we have only eight 
different possibilities: 

(i) 
(ii) € 1  = €2 = 1 and E )  = -1 
(iii) €1 = €3 = 1 and €2 = -1 
(iv) €2 = €3 = I and €1 = -1 
(v) €1 1 and €2 = €3 -1 
(vi) €2 = 1 and 6, = €3 = -1 
(vii) €3 = 1 and 61 = €2 = -1 
(viii) cl = €2 = 63 = -1. 
Inserting (28) into the rest of the equations, we find only two different equations for 

= €2 = €3 = 1 

w(0)  = y(O)/x(B) in all cases. They are 
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For the previous equations to have a solution, the right-hand side of (29) and (30) must 
be identical. This can be seen, with some work, to occur for all cases (iHviii). One can 
also see that these expressions factorize as 

sn 8' 
W ( @ ) / W ( 8 ' )  = 

for the cases where €3 = 1, and as 

cn8dn8 / cn8'dnB' 
11 + E I E Z ~ S I I ~ ~ ]  [ l  +cl6~ksn*8'] 

w(8) /w(8 ' )  = 

for cases where € 3  = -1. We, therefore, have a &independent free parameter in the general 
solution that we call A. The solution then reads 

when €3 = 1 and 

when €3 = -1. It can be noticed that these solutions are easily obtained by the residue of 
(29) when 8 + 0 if €3 = 1, or the limit 0 -+ 0 of the same equation when €3 = -1. 

We summarize the general solution of the factorization equations for the eight-vertex 
model as 

and 

where C* = 1 and A H A ,  AHB are arbitrary parameters. That is, we find two families of 
solutions each depending on a continuous and a discrete parameter. (The discrete parameter 
takes only two values.) 

These solutions lead, in the trigonometric limit k = 0, to only some specific cases of 
the general solution for the six-vertex R-matrix discussed in the next section. 

We now look for the Hamiltonians obtained by the first derivative of the transfer 
matrix [3] 

where 
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and the term (K;(O)-')k;(O) generalizes the formula for the Sklyanin Hamiltonian to 
the case when K-(O) # 1. This formula is only defined when tr[K+(-q)] # 0 and 
det[K-(O)] # 0. 

We see in equation (36) that, for the second family of solutions, the trace of K is zero. 
For this second family, we will then not have a well defined Hamiltonian from the first 
derivative of the transfer matrix. 

H J de Vega and A Gonzdlez-Ruiz 

When 

tr [K'(-q)]  = 0 (39) 

and 

a well defined Hamiltonian with only nearest-neighbour interactions is obtained from the 
second derivative of the transfer matrix as shown in [IO]. However, for the present second 
family of solutions, condition (40) does not hold. Furthermore d ~ ( 0 )  = 0, which gives 
only a trivial boundary term at the left end. The same happens with solutions (23) and (25) 
where one of the elements i s  zero. 

If condition (39) holds, but not equation (40), one obtains, from the second derivative 
of the transfer matrix, a Hamiltonian with terms that couple every pair of sites in the bulk 
with the boundary, i.e. a non-local Hamiltonian arises. 

The Hamiltonians associated to the first family of solutions (35) are given by 

Here, cr and 0 can take the values x or y in all possible combinations and the & are 
arbitrary parameters proportional to AHA.  

As is clear by rotating the axis, we can make the indices cr and 0 in equation (41) also 
take the value z.  

Equation (41) gives the most general choice of Bc compatible with integrability for the 
X Y Z  chain besides periodic and twisted BC. By twisted Bc, we mean 

U;+, = MoPM-' (42) 

where cr = x. y .  z and the twisting matrix M stands for a discrete symmetry of the eight- 
vertex model. That is, M = oz or ox.  

In conclusion, the XYZ Hamiltonian is integrable with BC that correspond to the 
coupling with a magnetic field on the end sites oriented along parallel or orthogonal 
directions. 

3. General K-matrices for the six-vertex model (XXZ and XXX chains) 

In this section, we briefly review the results of [4] concerning the general solution for the 
K-matrices of the XXZ chain and give the general solution for the X X X  case. 
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The R-matrix of the six-vertex model is given by 

and the general solution to the factorization equations in this model is given by [4] 

where 6, e ,  p and h are arbitrary parameters. The associated Hamiltonians to this K-matrix 
follow from the procedure used above. Defining 

(45) 

U; + d-u: - 

where the parameters b+, c+ and d+ follow from A+, pi, and o+ as shown: 

Here p i ,  
Equation (46) gives the most general choice of boundary terms compatible with 

integrability for the XXZ chain besides periodic and twisted BC. In the present case, one 
can twist the BC as 

= MuPM-I (48) 

# 0 so that det[K-(O)l # 0 and tr[K+(-q)] # 0. 

where M = ux or M = eiwoz, 0 4 w < ?x. 
Looking to equations (10) and (12), it is now possible to see why in the elliptic case 

we lose a continuous parameter that appears i n  the trigonometric limit. In the nigonometric 
case, dt = d- = 0 and we have only the constraint of equation (U), which gives a 
continuous family of solutions. The same happens with equations (9) and ( l l ) ,  losing again 
a continuous parameter from the elliptic case. 

It is also interesting to see which Hamiltonians are obtained from the trigonometric limit 
of the K-matrices obtained in the preceding section. When k = 0 in (35). one obtains 

and this is seen to correspond to solution (44) with 6 = 1 , t  = h / 2  and /L. h = ihHA/2 .  
The correspondmg Hamiltonians are obtained from the substitution of these values of the 
parameters in equations (45 j (47) .  
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For solution (36). when k = 0, one obtains 

which corresponds to solution (44) with p = 1, = 0, II and p ,  I = f I " ~ / 2 .  As discussed 
in the previous section, this limit leads to a Hamiltonian which includes a non-local coupling 
with the boundaries. 

It is interesting to note at this point that the trigonometric limit of the K-matrices for the 
eight-vertex model does not lead to an SUq(2)-invariant Hamiltonian. This is not the case 
for the freefermion eight-vertex model where the CHq(2) symmetry given by the elliptic 
K-matrices 'contracts' to a CJq(gl(l, 1)) symmetry in the trigonometric limit [IO, 121. 

Let us now look for the general solution of the factorization equations in the rational 
limit of the R-matrix (43) given by 

The equations for the K-matrix when R is rational follow by substituting the sine 
functions by their arguments (that is, sin(w) by o) in all the equations. The number of 
independent equations is the same in the rational and trigonometric cases. (This number 
decreases going from the elliptic to the trigonometric case.) Thus, the general solution is 

and using equation (37). one obtains 

where we have scaled by a factor of 2y  and omitted a term proportional to the identity 
operator. In this case, the parameters bi .  c i  and d+ follow from h i ,  p*, & and p* as 

where p*, 

with integrability for the XXX chain besides periodic and twisted BC. 

# 0 so that det[K-(O)I'# 0 and tr[Kt(-r7)1 # 0. 
Thii equation again provides the most general choice of boundary terms compatible 



Boundary K-matrices for the XYZ, X X Z  and XXX spin chains 6131 

4. Conclusions 

We have presented the general solution to the surface factorization equations for the 
XYZ, X X Z  and XXX models providing in this way the most general boundary terms 
compatible with integmbility. One can expect that if any kind of quantum group invariance 
is possible in the XYZ chain, the necessary boundary terms will be provided by those 
of Hamiltonian (41). For the XYZ chain a geneneralization of the construction for 
the eigenvalues and eigenvectors of the periodic chain remains to be performed. As 
the Hamiltonians obtained for the X X Z  and XXX models do not commute with J,. a 
generalization of the functional Bethe ansatz proposed by Sklyanin [13] for open BC should 
be useful to find the eigenvalues. 

In the context of two-dimensional integrable quantum field theories with boundaries, it is 
interesting to solve the boundary bootstrap and cross-unitarity equations for these solutions. 
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